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Abstract-The general equations for a dynamically curved crack in an anisotropic solid are derived,
and the asymptotic fields of a moving crack under arbitrary distributed loading on the crack surface
are calculated from them. For a moving crack under mixed-mode loading conditions a general
Muskhelishvili type approach is proposed to calculate intensity factors due to crack surface loading
in anisotropic materials. The kinking and curving caused by dynamic loading in anisotropic materials
are calculated using the maximum normal stress ratio criterion. The results show that cracks in
anisotropic solids may deviate from the straight path and approach a direction parallel to the stiff
axis even under symmetric loading and that a crack will tend to deviate more from the crack path
to the direction of the stiff axis as the crack speed becomes higher.

I. INTRODUCTION

With the wide applications of composite materials in engineering, fracture in anisotropic
materials has been extensively investigated during the past decades. Since crack deviations
in anisotropic materials as compared to isotropic materials have different behavior, the
study of the crack kinking and curving has received more attention recently (Obata et al.,
1989; Gao and Chiu, 1992; Xu and Keer, 1993a).

A general summary of previous research efforts in dynamic fracture has been given by
Freund (1990), and also in a series of papers, where he developed important analytical
methods for both the steady and non-steady problems of crack propagation. For the
anisotropic moving crack problem, Atkinson (1965), and Atkinson and Head (1966)
extended the method of Craggs to the moving crack tip analysis. Arcisz and Sih (1984)
employed integral transforms to study the local stress field of a moving crack. Wu (1989)
used the Stroh (1958) method to derive general expressions of the crack tip moving in an
anisotropic material. When a crack tip is moving along a smooth curve, the angular
distribution to the first order depends only on the instantaneous velocity of the tip. This
result was proved by Freund and Clifton (1974) for isotropic materials, and by Achenbach
and Bazant (1975) for anisotropic materials. Viola et al. (1989), and Piva and Radi (1991)
studied the dynamic response of a steadily moving crack and its time-dependent behavior
in an orthotropic media. Non-steady-state asymptotic fields of an accelerating crack were
studied by Freund and Rosakis (1992) for isotropic materials, and by Xu and Keer (1993b)
for anisotropic materials. In the present paper, the dynamic intensity factors caused by
crack surface loading are presented. The calculations indicate that the magnitude of the
intensity factors depends only on the distribution of the surface loading, whereas the
angular dependence involves the material constants and crack velocity.

In the recent study of crack curving for anisotropic materials, a number of criteria
have been proposed for predicting crack deviation, such as the strain energy density ratio
criterion (SEDR) by Zhang et al. (1990) and damage energy density factor (Z factor) by
Zhang et al. (1989). The criterion of maximum normal stress ratio (NSR) was proposed by
Buczek and Herakovich (1983), and a detailed study of this approach was given by Gregory
and Herakovich (1986). In this paper the NSR criterion was used to calculate the direction
of crack kinking and curving. The results agree with those given for the static case by Xu
and Keer (1993a).
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2. FUNDAMENTAL FORMULATION

The elastodynamic equations in an anisotropic solid without body forces are

(I)

where the displacements Vj refer to an original or spatially fixed coordinate system Xi' and
Cijkl, p are the material constants and density, respectively. Consider a smoothly curved,
running crack with local Cartesian coordinates X j at the crack tip, as shown in Fig. I,
defined so that the origin coincides with the advancing crack tip, and the xl-axis is oriented
towards the direction ofcrack propagation. The transformation that relates the two systems
is given by

(2)

where ao(t) and bo(t) are, respectively, the displacements of the crack tip in the Xl and Y,
directions. The matrix [nul is

(

COS O(t)

[nul = - Si~ O(t)

sinO(t)

cos O(t)

o
(3)

The displacements in these two coordinate systems are related by

(4)

where the displacements Vj refer to the original coordinate system, and the displacements
Ui to the local or moving coordinate system. Consideration of eqns (2) and (4) yields the
governing equation as

y x

bo(t)

(5)

o!---=::..----..L.......;,....L.-f---J-x\
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Fig. I. Coordinate system x-y attached to a running crack tip.
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(6)

and the transformed elastic constants COki can be written as COki = QipQjqQkrQisCpqrs- Clearly,
13 = 0, and the functions II, 12 have the form

'2 dv(x,y,t), ..II (x,y, t) = -U(X,y, t) () -2 dt ()-v(x,y, t){}

'2 du(x,y, t) , ..
12 (x,y, t) = -v(x,y, t) () +2 dt ()+u(x,y, t)()

which are given by substitution of

(7)

(8)

into eqn (6). Equations (5) combined with (7) are general equations in the moving coor­
dinate system. The functions Jj (j = 1, 2) are related to the speed of crack rotation, and the
terms II and 12 vanish for a straight moving crack. When considering the analysis of the
higher order asymptotic field for a smoothly curved crack, the functions II and 12 must be
taken into account.

The displacements Ul and U2 in the moving coordinate system are written as u(x, y, t)
and v(x, y, t). For convenience the constants COki will be written as Cijki, and the formulae
are considered in the local coordinate system x-Yo Equations (5) can be written as

all U,xx +a12U,xy +a13U,yy +a2l v,xx +a22V,xy +a23V,yy = pH(u) +pG(v)

a2l u,xx +a22U,xy +a23U,yy +a31 v,xx +a32V,xy +a33V,yy = pH(v) - pG(u) (9)

where the terms given by operators H(.) and G(.) are related to the crack tip rotation and
acceleration. For the first order solutions the terms H(.) and G(.) vanish, for the details of
which one can refer to Xu and Keer (l993b).

The coefficients aij (i, j = 1, 2, 3), which depend on the material constants and crack
velocity, can be written as

(10)

The constants Cmn of eqn (10) represent the constants Cijki of eqn (I). An integer function
Tsub(i,j), defined for notation purposes only, gives the transformation of subscripts between
Cmn and Cijki such that

(II)

where bij is Kronecker's delta. Thus, m = Tsub(i, j) and n = Tsub(k, l),
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y

x

Fig. 2. Moving crack with surface normal loading Pn(x) and shear loading p,(x).

3. STEADY-STATE SOLUTIONS OF A RUNNING CRACK WITH SURFACE LOADING

In this section an effective means of calculating dynamic intensity factors due to the
crack surface loading is proposed for general anisotropic materials. The problem of a semi­
infinite crack under arbitrary surface loading will be specifically discussed.

As shown in Fig. 2, normal loading Pn(x) and shear loading Ps(x) are applied to the
crack surfaces. The displacement solutions to the homogeneous equations (9) are assumed
in the form

u = aF(x+ifJy), v = bF(x+ifJy) (12)

where a and b are constants and F(x + ifJy) is an analytic function. By substituting eqns
(12) into eqns (9), one obtains

where the functions Qij(fJ) are

Qll (13) = (C li - pv2
) + 2C16 (ifJ) - C66 fJ 2

QdfJ) = CI6+(CI2+C66)(ifJ)-C26fJ2

Qn(fJ) = (C66-pv2)+2C26(ifJ)-CnfJ2.

For a non-zero solution to eqns (13) it is required that

(13)

(14)

(15)

If Zj = x+if3jy = rj eel, Zj = x-i~y = rj e- if
\ (j = 1, 2), then the displacements to the

homogeneous equations, corresponding to eqns (9), are

u = Re {al Q(ZI) +a2R(z2)}

v = Re{bIQ(zd+b2R(Z2)}

where (aj , bj ) the eigenvectors ofeqn (13), are

(16)

(17)

and fJj (j = 1,2) are the roots to eqn (15). For isotropic materials fJj = JI- (V2/C]) and
are related to the wave velocity. The stresses can be written as
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(Jxx = Re {M" Q(Zd+N'IR(zz)}

(Jyy = Re {Mzz Q(z,)+N22 R(zz)}

(Jxy = Re {M'ZQ(ZI)+N12 R(zz)}.

Here Q(z) = (d/dz) Q(z), R(z) = (d/dz) R(z) and

Mij = (C,q+ip,C6q )al +(C6q+iPICZq)bl

Nij = (C'q+ipzC6q)az+(C6q+iPzCzq)bz (i,j= 1,2)

3479

(18)

(19)

and the subscript q = T,ub(i, j) in (19). The boundary condition on the crack surfaces can
be written as

where the tractions on the crack surfaces are defined as in Fig. 2. The coefficients M 1Z , M zz ,
N 1Z and N 22 are, in general, complex numbers for anisotropic materials. It can be assumed
that

(21)

and F(t), G(t) are real functions. The relations between the coefficients Aj and Bj (j = 1,2)
can be determined from the symmetric and antisymmetric properties of tractions Pn and p,.
It therefore follows that

(22)

whence from eqn (21), the coefficients are

M12A z = ---
D

(23)

where

(24)

The roots of function D represent the surface wave speed in the direction of crack propa­
gation. For isotropic materials the root of eqn (24) is the Rayleigh surface wave speed
which satisfies the Rayleigh equation, 4P IPZ - (1 +PW = O. The critical velocity of a mov­
ing crack in an anisotropic solid should be less than the surface wave speed of the crack
propagation direction. For a detailed analysis of free surface wave in anisotropic material,
one can refer to the work by Barnett and Lothe (1985). Substitution of eqn (23) into (20)
yields

(25)

Using the formulae of Muskhelishvili (1952) and considering the stress distribution at the
semi-infinite crack surfaces (- 00, ho) gives
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1 fhO ~F(t)-iG(t) = (Pn-ips) J' d~
n~ -00 t-~

(26)

where the crack tip is located at (ho, 0), and ho for convenience is taken as O. The stresses
can be written as

(Jij = Re {~[MijN12F(ZI)-NijM12F(Z2)]}

+Re{~[-MijN22G(Zd+NijM22G(Z2)]} (i,j= 1,2) (27)

where the coefficients Mij and Nij are given in eqn (19), and

1 IhO ~F(t) = r:I:"" Pn(O t-J' d~,
n...,; t-ho -00 ~

1 fh O ~G(t) = r:I:"" Ps(O t-J' d~,
n...,; t-ho -00 ~

and the displacements can be written as

Here

and

f(~,ho,z) =ilOg[~+~J.
Jho-~-Jho -z

(28)

(29)

(30)

(31)

In eqn (27) the first part is related to the mode I loading condition and the second part is
related to the mode II loading condition. By considering the asymptotic field at the crack
tip, Zj = ho+r(cos 8+iPj sin 8), as r -+ 0, functions F and G can be written as

F(z) = ~!3.(COS8+iPjSin8)-1/2fho Pn(O d~,
...,; 2nr \r~ -00 Jho-~

1 A ., fhO
Ps(OG(z) = M:::. - (cos 8+1Pj sm 8)-1/2 d~.

...,; 21'lr 1'l - 00 Jho- ~
(32)

Using the definition of the dynamic stress intensity factors for mode I and II and by
substituting eqns (29) into (27), one obtains
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The form of the asymptotic field (27) is

3481

(33)

where

Fj = cos (}+iPJ sin(}, (j = 1,2) (34b)

and Mi}' Ni} are constants determined by the material property. In terms of eqn (30) and
(31) the asymptotic form of functions F(z) and G(zJ can be

- If A ., fho
Pn(OF(zj) = 2n 2 ; (cos () +If3j sm ()) 1/2 d~,

-w Jho-~

- If A ., fh O
p,(OG(zJ) = 2n2 ; (cos (}+lPJ sm(})1/2 d~,

-w Jho-~
therefore the displacement can be written as

(35)

(36)

The hoop stress (100 at the crack tip can be written as (100 = (KI/~) 100«(}), where the
function 100 depends on the crack velocity V, the material constants, such as the degree of
anisotropy L (L = EdE2), as well as the crack orientation c/>; here c/> is the angle made
between the crack axis and the stiff axis of an anisotropic material. Figures 3a, band c
show the angular variation of the hoop stress for various velocities and crack orientations.
Functions foo«(}) for a moving crack with velocity V = 0.15 JE21P in the stiff axis direction
for three values of L (L = 1, 3, 8) are shown in Fig. 3a. The similar cases for velocity
V = 0.3 JE 21P are shown in Fig. 3b. It can be seen that the maximum value will be higher
as the degree of anisotropy increases, which implies that the crack branching tendency will
be higher as the degree of anisotropy is higher. However, when the crack propagation is at
an angle of 30° with the stiff axis as shown in Fig. 3, the crack branching tendency will be
low as the degree of anisotropy increases.
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Fig. 3a. Angular variation of O'()() (V = 0.15 JE, Ip) for crack propagation in the stiff axis direction.
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The specific case of a concentrated point load at ( - L, 0) is considered. For this case
the functions in eqn (28) can be written as

F(Zj) = Pn ,Jh;+i, G(Zj) = Ps ,Jh;+i (j = I, 2)
nJzj-ho zj+L nJzj-ho zj+L

(37)

wherePn andPs are the strengths ofthe concentrated load acting in the normal and tangential
directions. Therefore, eqn (32) becomes

F(Zj) = ~ [2LPn(COSf)+i{3jSinf)-1/2
v 2nr-J;L

G(z) = ~ [2L PS (cos f)+i{3j sin f)-1/2.
v 2nr-J;L

Substituting eqn (33) into (27) yields

(38)

(Jij =~ j!LPnRe {~[MijNI2Fll!2_NijMI2F21!2J}

+~ j!Lp,Re {~ [- M'jNnF> '" +N'jMnF, '''I} (39)

where the coefficients Mij, Nij are listed in eqn (19), and functions Flo F2 are listed in (34b).
From eqn (39) it can be seen that the intensity factors for modes I and II are

which are identical with those for the static problem. The energy release rate G can be
written as

where

Gil = -1m {~ (b IN 12 -b2MI2)}

GI2 = 1m {~[(b.N22 -b2M 22 ) - (a1N 12 -a2M 12 )]}

G22 = 1m {~ (a 1N 22 -a2 M 22 )}-

For moving cracks in isotropic materials eqn (40) becomes

SAS 31:24-K

(40)

(41)
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Fig. 4. Crack with curved extension in anisotropic solids.

as given by Freund (1990). For the steady-state moving crack with a surface concentrated
loading p applied at the point ( - L, 0), the energy release rate G can be written as

Thus

f;L
p=K1C...jT· (44)

For the problem of a moving crack with length 2a and surface loading Pn and P" the
functions F(t) and G(t), given in terms of eqn (25), are

I fa ~F(t) = Pn(e) J' de,
nJt2 _a2 -a t-<,

I fa ~G(t) = Ps(O J' de.
nJt2 _a2 -a t-<,

The intensity factor can be derived from eqn (34) as

(45)

(46)

The expression of intensity factor (33) or (46) for a moving crack has the same form as
that of the static crack. Solutions for the moving crack of constant length may be obtained
by an analogous analysis.

4. STRESS ANALYSIS AT THE MOVING CRACK TIP

The slightly deviated shape of the semi-infinite crack extension (see Fig. 4) can be
approximated as
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(47)

This expression (47) has been used by Cotterell and Rice (1980) for the isotropic problem,
where the shape parameters of the crack extension are (x., (X2 and the deviation from the
crack path is assumed to be small. The crack is also assumed to be opened by normal and
shear tractions, Tn and Ts. Using eqns (18) gives the stress as

O"xx+O"yy = Re {(Mil +Mn ) Q(ZI)+ (Nil +N22 )R(Z2)}

O"yy -O"xx-2iO"xy = Re {(M22 -MII)Q(ZI) + (N22 -NIdR(Z2)}

-2i Re {M12 Q(zl) +NI2 R(Z2)} (48)

and the tractions as

(49)

or

-(Tn-iTs) = HRe [(Mil +Mn)Q(zl)+(NII +N22 )R(Z2)]}

+ e-2i~ {Re [(M22 -MII)Q(zd + (N22 -NI dR(Z2)]

-2i Re [M 12Q(zl) +NI2 R(Z2)]}. (50)

Here erefers to the angle made by the crack relative to the x-axis. By expanding eqns (48}­
(50) into powers of A., (A. « 1), where A. represents the deviation of the actual crack from
the straight path, the functions Q(ZI) and R(Z2) can be expressed as

Here, QO(ZI) and RO(Z2) are given terms of 0(..10
), and QI(ZI) and R I(Z2) are of 0(..11), as

A. --+ o. Thus the boundary conditions on the crack Q.zI and R.z2 at the position Z = t+i..1(t)
are given by

(52)

(53)

By noting that e= A.'(t), the boundary conditions on the crack, at Z = t+i..1(t), become

-(Tn-iTs) = Re[M22Qo+N22Ro]-iRe[M12Qo+NI2Ro]

+ Re [M22 QI +N22 RJl-i Re [M12 QI +N12 R.]

+..1 {Re [iPIM22Q~ +iP2N22R~] -i Re [iPIMI2Q~ +ip2Nl2Rm

-A.'{2 Re [M I2 QO + N 12 Ro]+i Re [(M22 -MII)Qo+ (N22 -N11)Ro]). (54)

For the static problem, eqn (54) becomes identical to the result of Xu and Keer (l993a).
Functions Q(ZI) and R(Z2) are holomorphic in the whole plane cut along the crack and
may be written as
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Q(zd = [N1z F(zd-N22 G(ZI)]/D

R(zz) = [-M 12F(zz) +MnG(zz)]/D. (55)

Here, the functions F(z) and G(z) have the same behavior as Q(z\) and R(zz), and F(t) and
G(t) are real functions. Therefore eqn (54) can be written as

- (Tn -iTs) = Re [Fo(t)] -i Re [Go(t)] + Re [F1(t)] -i Re [G, (t)]

-A {1m [m,F~(t) +mzG~(t)] +i 1m [m3F~(t)] +m4G~(t)]}

- A'{Re [n,Fo(t)+nzGo(t)] +i Re [n3FO(t) + n4GO(t)]} , (56)

where the coefficients m j , nj (j = I, 2, 3, 4) are listed in Appendix A.
By separating the terms of O(AO

) and 0(A1
) in eqn (56), using the formulae of

Muskhelishvili (1952), and considering only the redistribution of stresses caused by crack
extension (Tn = Ts = 0, at - CX) :::; t :::; 0),

I ill Jh-~Fo(t)-iGo(t) = I:l: (Tn-iTs)~d~ (57)
ltv t-h 0 t '"

Ft(t)-iG1(t) = I rll {A[lm(ml)T~+lm(mz)T;+ilm(m3)T~+ilm(m4)T;]
ltJt-hJo

+A.'[Re (n, )Tn+ Re (nz)Ts+i Re (n3)Tn+i Re (n4)Ts])~~d~ (58)
t-.."

where Tn and Ts are defined in terms of the shape of the crack extension and the stress
distribution ahead of the original crack tip. These tractions can be written as

Tn = cr~z - 2..1.'cr?z + I1crhz

Ts = A.'(cr~2 -cr?I)+cr?Z +Acr?z,z. (59)

Here, cr~ represents cri/x, y)ly=o and the stress cr~ and its derivative cr~,2 are given as follows:

(60)

The coefficients tj (j = 1,2) and Sj (j = 1,2,3,4) are listed in Appendix A. Equations (59)
can be expressed as

(61)

(62)
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Here kJ, kn denote the stress intensity factors at original crack tip, and the T stress is
denoted by T. For the static problem, the expressions for the tractions in eqns (61) and
(62) reduce to the leading terms derived by Xu and Keer (l993a).

By letting w be the slope of the crack tip at x = h (Fig. 4), the normal and shear
stresses, Uww and Urw, acting at a small distance r from the tip across its extension, are
obtained by substitution of Fo(z) , F\ (z) and Go(z), G1(z) in eqn (IS) and by identification
of terms in -(Tn-iTs) with uww-iurw . Thus,

uww-iurw = Fo(h+r)-iGo(h+r)+F\(h+r)-iGt(h+r)

-wr {[1m (md +i 1m (m3)]F~(h+r) + [1m (mz) +i 1m (m4)]G~(h+r)}

-w{[Re (nt) +i Re (n3)]Fo(h+r) + [Re (nz) +i Re (n4)]Go(h+r)}. (63)

By substitution of eqns (57) and (58) into (63) and letting r -+ 0, it follows that

1 ih
dtuww-iO"rw = r.. (q\-iqn) ~

7ry roy h-t

where

(64)

q\ = Tn + [t 1m (mt) - Re (n\)]wTn+ HIm (mz) - Re (nz)]wTs+ 1m (mt )A.T~

+ 1m (mz)A.T; + Re (nt)A.'Tn+ Re (nz)A'Ts

qn = Ts-Hlm(m3)-Re(n3)]wTn-[tlm(m4)-Re(n4)]wTs- Im(m3)A.T~

- 1m (m4)A.T; - Re (n3)A.'Tn_Re (n4)A.'Ts. (65)

For the anisotropic static problem, q\ and qn are identical to Xu and Keer (1993a), and for
the isotropic static problem they are identical to Cotterell and Rice (1980).

By substituting eqns (27), (28) into (30) and noting that

. I .
O"ww-10"rw = --(K\-lKn),

~

the crack tip intensity factors are given as

K\ = [k\+pt(J(tk\+Pz(J(tkn] + [P3(J(zk\+P4(J(zkn]Jh

Kn = [kn+q\(J(tk\+qZ(J(lkn]+[q3(J(zk\+q4(J(zk ll -2 ~(J(lTJ Jh.

(66)

(67a,b)

Here Pj and qj (j = 1,2,3,4) are listed in Appendix B. For the anisotropic static problem,
eqns (67a) become

K1 = (k\ - %(J( Ikn) - ~(J(zkn Jh

Kn = {kn[l-t(J(\ Im(PI +pz)]+t(J(\k\ Re(2-Pl pz)}

+ {~(J(zk\ Re(2-P1PZ)-~(J(zkn 1m (Pt +pz)-2 ~PtT}Jh. (68a, b)

Equations (68a, b) agree with the corresponding equations by Xu and Keer (l993a).
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5. ANALYSIS OF CRACK KINKING AND CURVING

The NSR criterion will be used to calculate the crack deviation, since compared to the
other criteria, it is mathematically more convenient. For isotropic materials, the direction
of the maximum normal stress is essentially the direction of K II = O. The direction of crack
kinking in anisotropic materials may not always occur along the direction of Kn = 0 or in
the direction of the maximum hoop stress. Therefore the ratio (Joo/Too may be crucial for
predicting the crack growth in such materials. The detailed theoretical analysis using the
NSR criterion is given by Xu and Keer (l993a), and the form of the intensity factors at the
crack tip is given as

(69a,b)

where Too(4J), which represents the tensile strength in the direction perpendicular to the
crack orientation 4J (see Fig. 5), can be written as Too(4J) = XT sin2 4J+ YT cos2 4J. The
relatively simple form of eqn (69) can be written as

(70)

where XT and YT denote, respectively, the tensile strength along the stiffer and more
compliant axes. For an isotropic material, the crack will always kink approximately towards
the direction of Kn = 0 since XT = YT in eqn (70).

Substituting eqns (67a, b) into (70) and considering crack orientation 4J + rx after
kinking, the following results for the crack kinking and curving are obtained:

(71)

and

(72)

For the static anisotropic problem eqns (71) and (72) reduce to the result of Xu and Keer

y

x

X 1

Fig. 5. The tensile strength T, is the function of t/J (t/J = c/J+8+rcj2).
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Fig. 6. Crack deviation vs degree of anisotropy.

(1993a). For the mode I loading condition, Kn = 0, and the crack deviation is a func­
tion of the material constants and crack velocity. Figure 6 shows that the kink angle is a
function of the degree of anisotropy for a crack movin in the direction an angle of 8°
relative to the stiff axis and at the speed of V = O.lEdp. As the degree of anisotropy
L (L = EdE2 = XTI YT) increases, the angle of crack deviation increases towards the direc­
tion parallel to the stiff axis. Figure 7 shows that crack kinking occurs under various crack
velocities. As the crack velocity (V = kJEdp) increases, the crack will deviate more from
the crack path to the direction parallel to the stiff axis. For the special case of isotropic
materials, eqns (71) and (72) are

(73)

given by Sumi et al. (1983).
The crack path stability in isotropic materials has been studied by Cotterell and Rice

(1980). The crack path is stable when the T stress is negative and is unstable when it is
positive. Xu and Keer (1993a) studied the crack path stability in anisotropic materials and
concluded that the stability of the crack depends on the material constants as well as the T
stress. For the dynamic problem, the crack path stability also depends on the crack velocity.
The analysis is based on the maximum normal stress ratio criterion with the crack tip
condition of eqn (69), Kn = f(fj))K). Moreover, other criteria can be used to analyse the
crack deviation and forms similar to that of eqn (69) will result.
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-20

-30
0 4 8 12 16

Fig. 7. Curves showing kink angle increase with increasing velocity.



3490 Y. Xu and L. M. Keer

6. CONCLUSION

The asymptotic field for a moving crack with surface loading can be calculated using
the moving coordinate system and Muskhelishvili approach. The results show that the
intensity factors of a semi-infinite moving crack depend only on the distribution of the
surface loading whether for anisotropic materials or isotropic materials. This result can be
well used to simplify the calculation of intensity factors for anisotropic materials. The
angular distribution functions of the asymptotic fields depend on the crack velocity and
material properties.

In terms of the maximum normal stress ratio criterion, a running crack will move in
the direction of Ku = f(4J)K1• The function f(4J) is zero only when either the crack tip is
parallel to a principal axis or the tensile strengths are isotropic. Under symmetric loading
conditions the crack may deviate from the straight path. The calculations show that there
is crack deviation from the crack path as the crack velocity is larger.
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APPENDIX A

The coefficients mi, ni in eqn (56) are as follows:

m, ({J,M22N12-{J2N22M,2)!D,

m3 (-fJ,M'2N'2+fJ2N'2M,,)/D.

m2 = (-{JIMnN22+P2N22Mn)!D,

m4 = (P,M 12 Nn -P,N'2Md!D,
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SI = Im(m l ),

S3 = - 1m (m 3 ),

D = M22NI2-N22M12'

S2 = 1m (m2)'

S. = - 1m (m.),

APPENDIX B

The coefficients Pi' qi (j = I, 2, 3, 4) are as follows:

PI = ±Im(m l ),

P3 = ~ 1m (m l ),

ql = I-± 1m (m3) - Re (X),

P2 =±lm(m2)-2,

P. = ~ 1m (m3) - 3,

q2 = Re (n.) -±1m (m.),

3 3
q3 = .- [2Re (n3) - 1m (m3)] +;; [1- Re (X) - Re (n3)]'

q. = ~ [2Re (n.) - 1m (m.)],

I
X= D(MIINI2-NIIMI2)'


